Chapitre 5

PROJECTION D'UNPOINT SUR UNE DROITE PARALLELEMENT à UNE AUTRE DROITE

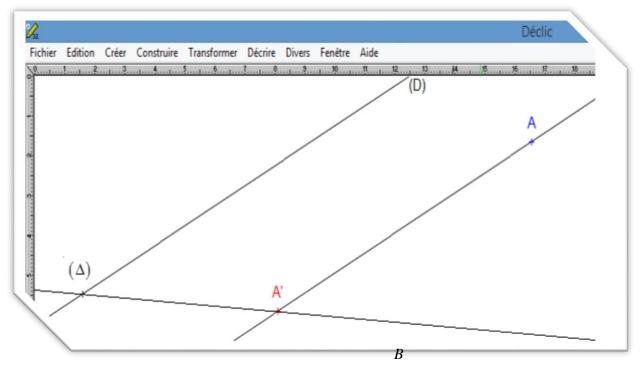
Compétences exigibles

- i. Définition
- ii. Théorème de Thales
- iii. Conservation de coefficient de colinéarité de 2 vecteurs

1_projection d'un point sur une droite parallèlement à une autre droite

Activite1

On suppose les fils des rayons du soleil prennent la direction de la droite(D) et la droite (Δ) représente la surface du sol. L'ombre du point A sur le sol est le point A'l'intersection de la droite (Δ) avec la droite passant par A et parallèlement à la droite(D) .(voir figure ci contre).



2_ Vocabulaire

- Le point A' est appelé projection du point A sur (Δ) parallèlement $\grave{a}(D)$.
- $B \in (\Delta)$: B est son propre projeté $Sur(\Delta)$ parallèlement à (D).

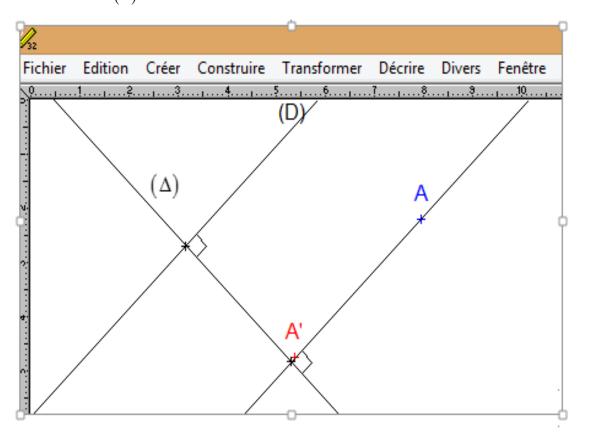
3_Définition:

Soient (D) et (Δ) deux droites secantes et M un point du plan tel que $M \not\in (\Delta)$.

Dire que le point M 'est la projection du point M sur (Δ) parallèlement $\mathring{\mathbf{a}}(D)$ veut dire : $M' \in (\Delta)et(MM') || (D)$.

Cas particulier:

Si $(D)\perp(\Delta)$: A' est la projection orthogonale de A sur (Δ) .



4_Application:

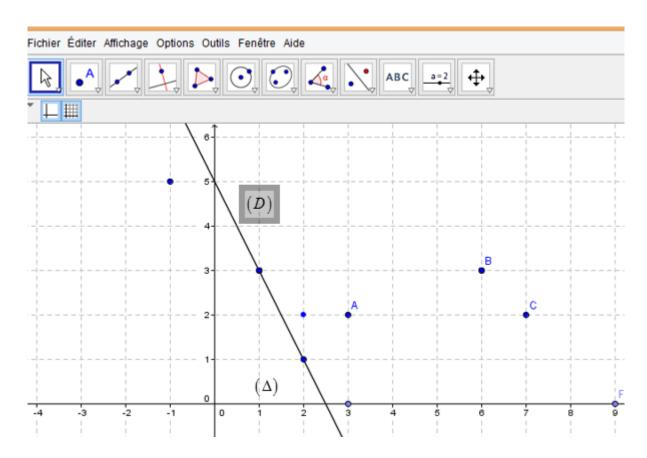
On considère (la figure ci contre)

Des points B , C , F sont alignes.

La droite (BC) est parallèle à (D).

Les points E et F appartiennent $\grave{a}(\Delta)$.

- I. Déterminer les projections des points A,B,C,E,F sur (Δ) parallèlement $\mathring{\mathbf{a}}(D)$.
- II. Représenter les projections des points A,B,C,E,F sur (D) parallèlement $\mathring{\mathbf{a}}(\Delta)$.
- III. Déterminer l'ensemble des points du plan dont la projection sur (Δ) parallèlement à (D) est le point F .
- IV. Construire le point M tel que le point E est sa projection (Δ) parallèlement $\dot{\mathbf{a}}(D)$ et que le quadrilatère ECFM soit un parallélogramme.



Ii_Theoreme de Thalès

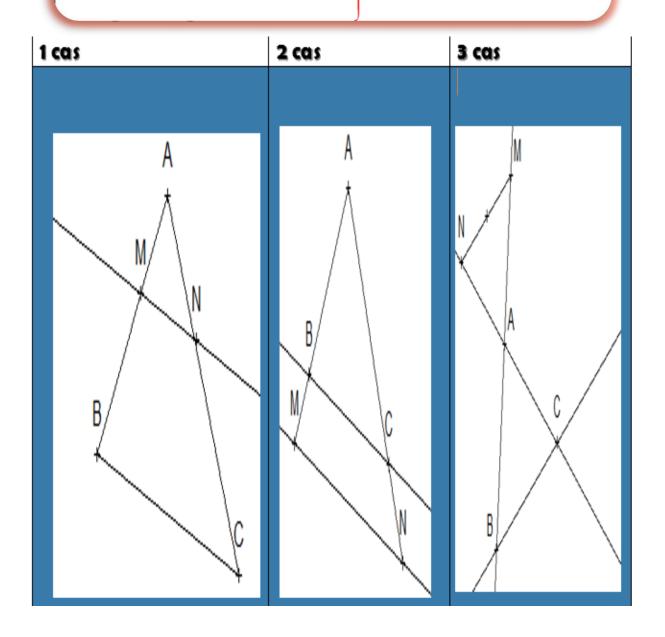
> Théorème de Thalès direct :

*A, B, M trois point salignes

*A, N, C trois point salignes

*(MN)||(BC)

$$donc \frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

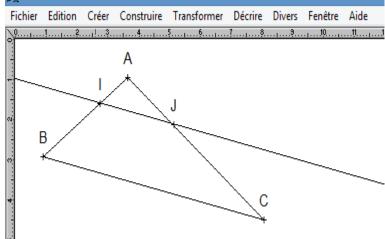


Application:

ABC triangle tel que : \(\)

$$\begin{cases} (IJ)||(BC) \\ AI = 6 \, cm; \ AB = 18 \, cm; \ IJ = y \, cm \\ AJ = 5 \, cm; \ AC = x \, cm; \ BC = 12 \, cm \end{cases}$$

Voir figure



1. Enoncer le théorème de Inales

$$\frac{AI}{AB} = \frac{AJ}{AC}$$

2. A partir de l'égalité $\frac{AI}{AB} = \frac{AJ}{AC}$ vérifier que x = 19 cm

3. A partir de l'égalité
$$\frac{AI}{AB} = \frac{IJ}{BC}$$
 vérifier que $IJ = 4cm$

Péciproque du théorème de Thalès

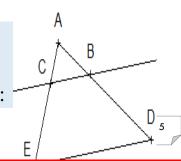
(méthode pour prouver si 2 droites sont parallèles

$$\begin{cases} *A, M, B \text{ point s alignes} \\ *A, N, C \text{ point s alignes} \\ *A, M, B \text{ sont dans le meme ordre que } A, N, C \end{cases}$$

$$\frac{AM}{AB} = \frac{AN}{AC}$$

Exercice résolu

$$ADE \text{ un triangle telque} \begin{cases} B \in [AD]; C \in [AB] \\ AB = 4cm; AD = 6cm \\ AC = 6cm; AE = 9cm \end{cases} \text{ voir figure :}$$



Montrons que : (BC)||(DE)

Ona: donc

donc $\{*A, B, D \text{ sont alignes}\}$

ona:

*A,C,E sont alignes

 $\{*A,B,D \text{ sont dans le meme ordre que } A;C;E$

$$* \frac{AB}{AD} = \frac{AC}{AE} = \frac{2}{3}$$

donc : $^{\left(BC\right)\parallel\left(ED\right)}$ d'après la réciproque du théorème de Thalès

exercice; (voir figure ci contre) montrer que $(BC) \parallel (DE)$

$$\begin{cases} AB=4,5cm ; AC=30cm \end{cases}$$

$$AD=33cm ; AE=22cm$$

III_ Conservation du coefficient de colinéarité de 2 vecteurs

Activité:

Soient (D) et (Δ) deux droites sécantes en A. Les points M,N,P appartiennent à (Δ) talque : $\overrightarrow{AM} = 2\overrightarrow{AC}$; $\overrightarrow{AN} = 5\overrightarrow{AC}$; $\overrightarrow{AP} = -3\overrightarrow{AC}$ et les points M',N',P' sont les projections respectives des points M,N,P sur (Δ) parallèlement à (BC).

- 1. Faire une figure géométrique
- 2. En utilisant le théorème de Thalès établir que :

$$\frac{AM'}{AB} = 2$$
; $\frac{AN'}{AB} = 5$; $\frac{AP'}{AB} = 3$

3. En deduire que $\overrightarrow{AM}' = 2\overrightarrow{AB}$; $\overrightarrow{AN}' = 5\overrightarrow{AB}$; $\overrightarrow{AP}' = -3\overrightarrow{AB}$

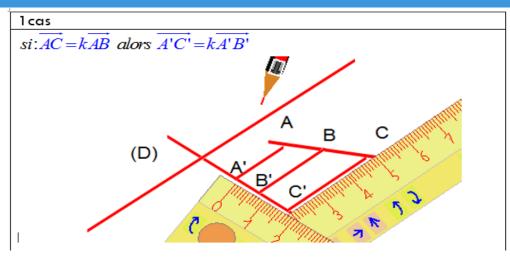
Si $M \in (\Delta)$ et M' son projeté sur (D) parallèlement à (BC) telque $\overrightarrow{AM} = \alpha \overrightarrow{AC}$ avec $\alpha \in IR$. Quelle conjecture peut-on dire à propos des 2 vecteurs \overrightarrow{AM} et \overrightarrow{AB} .

regle: (D) et (Δ) deux droites sécantes.

A,B,C,D des points du plan et A',B',C',D' leurs projections (resp) sur (D) parallèlement à (Δ) .

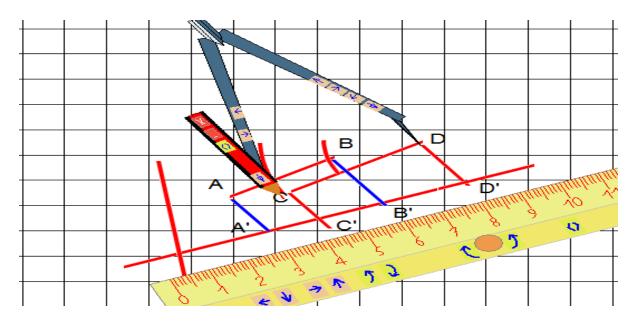
Si
$$\overrightarrow{AB} = k\overrightarrow{AC}$$
 alors $\overrightarrow{A'B'} = k\overrightarrow{A'C'}$

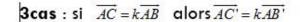
Si
$$\overrightarrow{CD} = k\overrightarrow{AB}$$
 alors $\overrightarrow{C'D'} = k\overrightarrow{A'B'}$

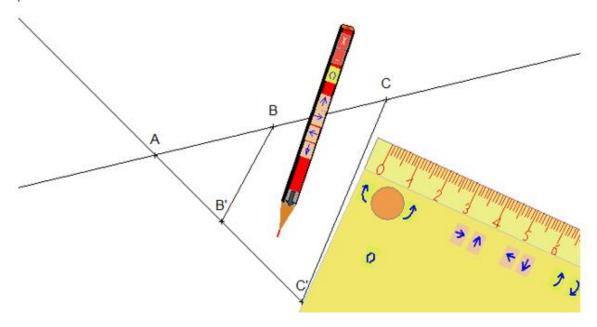


2 cas :

Si:
$$\overrightarrow{CD} = k\overrightarrow{AB}$$
 alors $\overrightarrow{C'D'} = k\overrightarrow{A'B'}$







Exercice résolu:

Soit ABC un triangle et $M \in [AB]$ tel que $\overline{AM} = \frac{1}{3}\overline{AB}$ et N le projeté de M sur (AC) parallèlement à (BC).

Montrons que : $\overrightarrow{AN} = \frac{1}{3}\overrightarrow{AC}$

- \checkmark A est sa propre projection sur (AC) parallèlement $\grave{\mathbf{a}}(BC)$
- ✓ N est la projection de M sur (AC) parallèlement à(BC)
- \checkmark C est la projection de B sur (AC) parallèlement à(BC)

Et comme $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB}$ alors $\overrightarrow{AN} = \frac{1}{3}\overrightarrow{AC}$ car la projection conserve le coefficient de colinéarité.

